pátek 5. června 2009

Kyslík

Kyslík

Z Wikipedie, otevřené encyklopedie

Skočit na: Navigace, Hledání
Kyslík
Kyslík
Atomové číslo 8
Stabilní izotopy 16,17,18
Relativní atomová hmotnost 15,9994 amu
Elektronová konfigurace 1s2 2s2 2p4
Skupenství Plynné
Teplota tání −218,79 °C (54,36 K)
Teplota varu −182,95 °C (90,20 K)
Elektronegativita (Pauling) 3,44
Hustota 1,429 kg/m³ (0 °C, 101,325 kPa)

Kyslík chemická značka O, (lat. Oxygenium) je plynný chemický prvek, tvořící druhou hlavní složku zemské atmosféry. Je biogenním prvkem a jeho přítomnost je nezbytná pro existenci většiny živých organizmů na této planetě. Autorem jeho českého a slovenského názvu je Jan Svatopluk Presl.

Obsah

[skrýt]

[editovat] Historie výzkumu kyslíku [1]

  • 15. století - Leonardo da Vinci sledoval vlastnosti vzduchu. Určil, že jedna z jeho složek podporuje hoření.
  • 1608 - Cornelius Drebbel navrhl výrobu kyslíku zahřátím sanytru (ledku).
  • 1772 - Carl Wilhelm Scheele objevil kyslík a pojmenoval ho "ohnivý vzduch". Objev byl však publikován až v roce 1777.
  • 1774 - Joseph Priestly objevuje kyslík dva roky nezávisle po Scheeleovi. Publikuje však svůj objev jako první.
  • 1779 - Antoine Lavoisier navrhuje název „oxygen“ (kyselinu tvořící) pro „dýchatelnou“ část vzduchu, která se účastní hoření.
  • 1781 - Henry Cavendish zjišťuje, že voda je sloučeninou kyslíku a vodíku.
  • 1785 - van Marun popisuje pach kyslíku, mylně ho však přisuzuje unikátní formě kyslíku.
  • 1840 - Christian Schönbein objevuje ozón, díky charakteristickému zápachu při používání elektrických přístrojů ve špatně větrané laboratoři.
  • 1858 - Werner von Siemens konstruuje první přístroj, který využívá tichého elektrického výboje k výrobě ozónu.
  • 1861 - William Odling navrhuje vzorec O3 pro ozón po reakci ozónu s iodidem draselným.
  • 1868 - J.L. Soret potvrdil vzorec ozonu O3 difůzními studiemi.
  • 1877 - Kyslík byl poprvé zkapalněn nezávisle L. Cailletetem a R. Picketem.
  • 1882 - J.W. Strutt objevuje, že atomová hmotnost kyslíku není přesně 16,00 , ale 15,872.

[editovat] Základní fyzikálně - chemické vlastnosti

Kyslík je velmi reaktivní permanentní plyn, nezbytný pro existenci života na naší planetě. Slučování kyslíku s ostatními prvky se nazývá hoření. Jde prakticky vždy o exotermní reakci, která vede k uvolnění značného množství tepelné a světelné energie. Produkty hoření se nazývají oxidy, dříve kysličníky.

[editovat] Výskyt v přírodě

Na Zemi je kyslík velmi rozšířeným prvkem.

  • V atmosféře tvoří plynný kyslík 21 objemových %.
  • Voda oceánů, které pokrývají 2/3 zemského povrchu je hmotnostně složena z 90 % kyslíku.
  • V zemské kůře je kyslík majoritním prvkem, je přítomen téměř ve všech horninách. Jeho obsah je odhadován na 46 – 50 hmotnostních %. V hlubších vrstvách zemského tělesa zastoupení kyslíku klesá a předpokládá se, že v zemském jádře je přítomen pouze ve stopách.

Ve vesmíru je zastoupení kyslíku podstatně nižší. Na 1 000 atomů vodíku zde připadá pouze jeden atom kyslíku.

[editovat] Anorganické sloučeniny

Ve svých sloučeninách se kyslík vyskytuje převážně v mocenství O2-, výjimečně pak jako O1- a O1+a také O1/2- v superoxidech(KO2- superoxid draselný).

Záporně dvojmocný kyslík je přítomen ve velmi široké škále sloučenin. Především jsou to oxidy, vlastnosti jednotlivých sloučenin jsou detailněji popsány v kapitolách příslušných jednotlivým prvkům.

Kyslík je přítomen ve většině anorganických kyselin a jejich solí. Z těch nejdůležitějších je možno jmenovat uhličitany (CO3)2-, křemičitany (SiO3)2-, sírany (SO4)2-, dusičnany (NO3)- a fosforečnany (PO4)3-.

Alkalické sloučeny hydroxidy se vyznačují přítomnosti skupiny -OH. Mezi nejznámější patří hydroxid (louh) sodný NaOH, draselný KOH a vápenatý, hašené vápno Ca(OH)2.

Ve valenci O1- vystupuje kyslík v peroxidech, nejznámější z nich je bezesporu peroxid vodíku H2O2. Tato kapalná sloučenina má silné oxidační účinky a v praxi se používá ve formě svých vodných roztoků v medicíně pro desinfekci a v chemii jako oxidační činidlo. Peroxid sodný Na2O2 je pevná, hygroskopická látka, která nachází uplatnění jako velmi energetické oxidační činidlo.

Pouze fluor vykazuje větší elektronegativitu než kyslík a tvoří s ním několik fluoridů, v nich se kyslík vyskytuje v mocenství O1+ i O2+. Všechny fluoridy kyslíku jsou značně nestálé, přesto však existuje reálná možnost jejich využití jako raketového paliva.

[editovat] Organické sloučeniny

Kyslík se vykytuje ve velkém množství organických látek. Řada těchto sloučenin je součástí všech živých organizmů, protože kyslík patří mezi základní biogenní prvky. Základní skupiny organických sloučeni s obsahem kyslíku jsou:

[editovat] Využití atmosférického kyslíku

Jedná se o neviditelnou složku prakticky každého fosilního paliva obsaženou v ovzduší (technologická oxidace fosilních paliv)

Poznámka : nežádoucí chemicko technologický či fyzikálně chemický proces - koroze kovů způsobená nežádoucí oxidací kovů a dalšími doprovodnými chemickými reakcemi

[editovat] Výroba a využití

kapalný kyslík

Kyslík se praktiky výlučně vyrábí destilací zkapalněného vzduchu. Vyrobený kyslík se uchovává buď ve zkapalněném stavu ve speciálních Dewarových nádobách (viz obrázek) nebo plynný v ocelových tlakových lahvích. Vzhledem k vysoké reaktivitě čistého kyslíku je nezbytné, aby se nedostal do přímého kontaktu s organickými látkami. Proto se všechny součásti aparatury pro uchovávání a manipulaci s kapalným nebo stlačeným kyslíkem nesmí mazat žádnými organickými tuky nebo oleji.

  • V medicíně se čistý kyslík používá při operacích a traumatických stavech pro podporu pacientova dýchání. Směsi kyslíku nebo vzduchu s inertními plyny slouží potápěčům k potlačení kesonové nemoci při ponorech do velkých hloubek.
  • Také vysokohorští horolezci a letci se v nutných případech uchylují k dýchání čistého kyslíku. I piloti stíhacích letadel jsou vybaveni směsmi stlačených plynů, jejichž základní složkou je kyslík. To proto, že zvýšením koncentrace kyslíku se zvýší jeho parciální tlak a ulehčí se tak dýchání v řídké atmosféře a předejde vysokohorské nemoci.
  • Američtí astronauti programu Apollo dýchali také atmosféru čistého kyslíku, což umožnilo snížit tlak v kabině zhruba na třetinu běžné hodnoty a tak odlehčit její hermetickou konstrukci. To se ale stalo osudným posádce Apolla 1, která ve vysoce hořlavé atmosféře uhořela.
  • Při hoření směsi kyslíku s acetylenem lze dosáhnout teploty cca 3 150 - 3 200°C. Proto se kyslíko-acetylenový plamen využívá k řezání oceli a tavení kovů s vysokým bodem tání, např. platinových kovů.
  • Při výrobě oceli je nutné především odstranit z matrice železa uhlík. Tzv. Bessemerův způsob výroby spočívá ve vhánění čistého kyslíku do roztaveného železa v konvertoru, kde za vysoké teploty taveniny dochází k oxidaci přítomného grafitického uhlíku na plynné oxidy, které z taveniny vytěkají.
  • Kapalný kyslík většinou slouží jako okysličovadlo raketových motorů při letech kosmických lodí.

[editovat] Ozon

Kromě obvyklých dvouatomových molekul O2 se kyslík vyskytuje i ve formě tříatomové molekuly jako ozon O3. Za normálních podmínek je to vysoce reaktivní plyn modré barvy a charakteristického zápachu s mimořádně silnými oxidačními účinky. Při teplotě -112 °C kondenzuje na kapalný tmavě modrý ozon a při -193 °C se tvoří červenofialový pevný ozon.

[editovat] Výroba a využití

Poměrně snadno lze připravit ozon tichým elektrickým výbojem v atmosféře čistého kyslíku. Vzniká tak směs kyslíku s ozonem, kde podíl O3 dosahuje obvykle 10%. Čistý ozon lze pak připravit frakční destilací této plynné směsi.

Praktické využití ozonu je dáno jeho silnými oxidačními účinky.

  • V medicíně slouží ke sterilizaci nástrojů. Poněkud diskutabilní jsou účinky dnes poměrně populární ozonové terapie, která by podle svých zastánců měla vést k regeneraci buněk a tkání. Odpůrci této metody poukazují na možná rizika podobných omlazovacích kůr, daná především vysokou reaktivitou i toxicitou ozonu.
  • Baktericidní účinky ozonu slouží k desinfekci pitné vody namísto dříve hojně využívané dezinfekce vody plynným chlorem nebo chlornanem.
  • Silné oxidační účinky ozonu se velmi často využívají v papírenském průmyslu k bělení celulózy pro výrobu papíru.

[editovat] Ozonová vrstva

Mimořádně významnou roli pro pozemský život hraje tzv. ozonová vrstva atmosféry, která chrání planetu před ultrafialovým slunečním zářením. Je to část stratosféry ve výšce 25 – 35 km nad zemským povrchem, v níž se nachází značně zvýšený poměr ozonu vůči běžnému dvouatomovému kyslíku.

[editovat] Přízemní ozon

Opakem životu prospěšného ozonu ve stratosféře je přízemní ozon, vyskytující se těsně nad zemským povrchem. Tento plyn je lidskému zdraví nebezpečný, působí dráždění a nemoci dýchacích cest, zvyšuje riziko astmatických záchvatů, podráždění očí a bolesti hlavy.

Zvýšený vznik přízemního ozonu pozorujeme především za horkých letních dnů v lokalitách s vysokou koncentrací výfukových plynů automobilových motorů, kde dochází k růstu obsahu oxidů dusíku a plynných uhlovodíků ve vzduchu. Tento jev se souhrnným názvem označuje jako suchý smog, podle místa svého častého výskytu také jako losangelský smog.

V posledních letech jsou všechny osobní automobily vybaveny katalyzátory, které přeměňují oxidy dusíku na inertní plynný dusík a toxický oxid uhelnatý na relativně neškodný CO2. Zavedením těchto opatření se podařilo snížit koncentraci přízemního ozonu ve velkých průmyslových centrech o několik desítek procent.

Elektronová konfigurace: 1s2, 2s2, 2p4.

[editovat] Související články

[editovat] Reference

  1. Greenwood, N. N. - Earnshaw, A.: Chemie prvků. 1993.

[editovat] Literatura

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood - A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

[editovat] Externí odkazy

logo Wikimedia Commons
Wikimedia Commons nabízí obrázky, zvuky či videa k tématu
  • Periodická soustava a tabulka vlastností prvků [1]
  • Chemický vzdělávací portál [2]
  • WebElements (anglicky) [3]
  • Periodická tabulka prvků [4]



Periodická tabulka chemických prvků
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
H (přehled) He
Li Be
B C N O F Ne
Na Mg
Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo
*Lanthanoidy La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
**Aktinoidy Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Skupiny prvků: Kovy - Nekovy - Polokovy - Blok s - Blok p - Blok d - Blok f

Žádné komentáře:

Okomentovat

Přihlášení